
24 The Delphi Magazine Issue 71

Delphi Meets
C# Via COM
by Craig Murphy

Unless you have been living
under a rock for the last year

or so, you will have noticed that
Microsoft has focused its attention
firmly in the internet camp. It is
doing this in a variety of different
ways, most of them involving the
moniker ‘.NET’. As part of this
move towards greater internet
integration, and perhaps as a
result of legal issues with Sun,
Microsoft has created (yet
another) programming language
that claims to be the panacea for all
the failings in the programming
languages that we all use today.
This all-singing, all-dancing lan-
guage is C# (pronounced C-Sharp).
Like the musical notation it is
named after, C# is intended to be a
cut above C, and a shade below
C++. Thus, C# has all the good bits
of C and C++, but none of the bad
bits. Allegedly.

C# as a language was designed
by Anders Hejlsberg and Scott
Wiltamuth. You should recognise
one of those names: Anders was a
key architectural figure during the
design and build of Delphi. As you
might expect, there are some
Delphi-isms in C#. During 2000,
Microsoft submitted the C#
language to the European Com-
puter Manufacturers Association
(ECMA) Technical Committee. The
ECMA TC comprises various
groups, one of which has a mission
to ‘standardise the syntax and
semantics of a general-purpose,
cross-platform, vendor-neutral
scripting language’. The same
group created ECMAScript, a
standardised version of
Microsoft’s JScript and Netscape’s
JavaScript. Assuming that the
ECMA TC accepts and standard-
ises C#, vendors such as Borland
will be able to implement the lan-
guage themselves (they will even
be able to extend the language if
they so wish).

This article is about inter-
operability between Delphi and the
.NET platform: using C# code in a
Delphi environment and vice
versa. Over the course of this arti-
cle I will be using Visual Studio
.NET Beta 1: at the time of writing
(May 2001) this was the most
recent version. By the time you
read this, Beta 2 may be available:
it is expected to ship at TechEd
Europe 2001 (early July), so you
may find some minor changes and
improvements. Similarly, if you are
reading this article and are using
the ‘Release To Manufacturing’
(RTM) version, you should expect
that some areas will have changed.
A detailed discussion about
VS.NET and the .NET Framework is
beyond the scope of this article.
However, you will find a good intro-
duction in Steve Scott’s Perspec-
tives column in Issue 68 (April
2001).

The remainder of this article will
cover three areas. First, a .NET and
C# preamble. Then, using C#
(.NET) objects in your Delphi appli-
cation. Finally, I’ll discuss using
your Delphi objects in a .NET appli-
cation.

Motivation
You are probably asking yourself
the question: ‘Why would I want to
build a Delphi application that uses
a C# object?’ The answer is quite
simple: integration with your cli-
ent’s application. Greater integra-
tion brings with it the obvious

opportunity for business-to-
business (B2B) transactions: after
all, you have a mechanism for
interacting with your client’s data
and systems.

Similarly, it is very possible that
you may wish to use Delphi (or
C++Builder) objects in the .NET
platform. This is a scenario that is
a little easier to imagine. I am sure
we all have a lot of tried and tested
business logic embedded inside
COM objects. So, if we are able to
re-use existing COM objects in
.NET applications, we will be able
to build our .NET applications a lot
faster, because we are not starting
to write the application from
scratch. If we are re-using code, we
may continue to maintain it, thus
our existing investment is pro-
tected. Equally, we do not have to
migrate an entire application
either: re-use allows us to gradu-
ally move our application piece by
piece.

Introducing C#
C# has enjoyed a lot of attention
since it was announced last year,
and a lot has been written about it
already. Therefore, this section is
not going to be a C# tutorial (diffi-
cult to justify in a Delphi/Kylix pub-
lication!). Instead, it will be a very
brief overview. If you wish to learn
more about C#, there are a few
websites and books mentioned in
the Resources sidebar at the end of
the article.

C# is an object-oriented lan-
guage that allows the development
of plain vanilla Windows applica-
tions, class libraries, web services
and Windows services. It is a lan-
guage that offers productivity and
safety. Productivity, because it is a
well-thought out mix of C and C++,

➤ Figure 1: The bigger picture.

July 2001 The Delphi Magazine 25

therefore there is a multitude of
existing developers who can
quickly get up to speed with C#.
Safety, because C# is, by default,
type-safe. I use the phrase ‘by
default’ because it is possible to
mark sections of C# code as being
‘unsafe’: such code can manipulate
pointers and perform those
(dodgy) typecasts that C/C++ pro-
grammers claim makes them so
productive!

Positioning C# In .NET
You may find .NET rather over-
whelming, after all it is technically
a whole new platform. A new plat-
form heralds a new architecture, a
new way of doing things, and .NET
is no exception. Continuing the
current trend, .NET brings with it a
barrel-load of new acronyms to
confuse and amuse! C# sits along-
side the other ‘.NET languages’,
most of which should be familiar to
you, at least in name: Visual Basic,
Visual C++ and JScript. No doubt
you will have read (with amuse-
ment) that COBOL is considered a
.NET language.

The .NET compilers (of which C#
is one) create Microsoft Intermedi-
ate Language (MSIL), often
referred to as IL. IL is converted
into native code in three ways:
Just-In-Time (JIT), on demand, or
when the application is loaded.

The need for IL stems from the
notion of a Common Language
Runtime (CLR). The CLR has to
support more than one develop-
ment language, therefore it has to
manage a wide range of data types.
This is where it gets a little
complex: if we are to achieve

complete interoperability between
all the IL-emitting compilers it is
imperative that we use only the
data types and features that are
common to all the languages. To
ease the complexity, the Common
Language Specification (CLS) pro-
vides a set of rules that we can use
to help ensure that the code we
write is ‘CLS-compliant’. The CLR
and CLS are geared up to support a
variety of languages. As you might
imagine, porting your existing
code and applications to the equiv-
alent .NET language may require a
moderate amount of rework.

The idea behind IL is not new, it
is similar to the p-code that tradi-
tional compilers generate. Whilst
you might be thinking that there is
a performance overhead, the abil-
ity to choose when the IL is con-
verted into native code reduces
that overhead. Couple this with the
primary benefit that IL is not
bound to any particular processor
and I think you will agree that IL
has some definite advantages.
Note that IL is converted into
native code, it is never interpreted,
thus we dispense with the
performance hit that is typically
associated with interpreters. Once
IL has been converted into native

code it can be added to an ‘assem-
bly cache’ (defined in the Glossary
sidebar), meaning that any per-
ceived performance hit is negated.

Figure 1 explains where C# fits
into the .NET platform. There is a
lot there, far too much for one arti-
cle [Phew! Ed]. We will be focusing
our attention on C# and the CLR.
Particular attention will be given to
the Execution Support element: it
provides ‘wrappers’ that allow
interoperability between the
world of COM and the brave new
world of .NET.

From .NET To Delphi
The MSIL code that is generated by
the C# compiler is said to execute
as managed code. Managed code
interacts with the CLR and pro-
vides the metadata (defined in the
Glossary sidebar) that the CLR
then uses to provide such services
as: memory management, lan-
guage interoperability, garbage
collection, versioning and secu-
rity.

This is in contrast to unmanaged
code, such as COM components
and the Win32 API, which are exe-
cuted outside the CLR.

We will be creating a C# object,
therefore it will be executed as
managed code. However, the
Delphi application that instant-
iates the C# object has to run in an
unmanaged environment. Essen-
tially, we will need to build a bridge
between the managed code and
the unmanaged code. Thankfully,
the CLR helps us out: it will provide
a proxy object that allows

➤ Figure 2: Unmanaged meets
managed: the CLR creates a
CCW at runtime.

Characteristic Unmanaged
Environment (COM)

ManagedEnvironment
(.net platform)

Type definition Type library Metadata

Identity Guids Shared names

Coding model Interface based Object based

Versioning Immutable Resilient

Error-handling mechanism HResults Exceptions

Type safety Unsafe Safe by default

Type compatibility Binary standard Type standard

➤ Figure 3: Unmanaged
versus managed.

26 The Delphi Magazine Issue 71

unmanaged COM components to
use managed (C#) classes. This
proxy object is known as a COM
Callable Wrapper (CCW). Figure 2
graphically depicts the high-level
architecture of the unmanaged-
to-managed bridge.

Architecturally, we are able to
use managed .NET components in
an unmanaged environment.
Figure 3 shows key characteristics
that differ between unmanaged
and managed environments, or

rather between the COM environ-
ment and the .NET platform. Over
the course of this article we will
touch on most of these character-
istics. We can think of the CCW as
an arbitrator: it is capable of pro-
viding an abstraction between the
managed and unmanaged
environments.

Our First C# Object
This is a magazine about Delphi
and Kylix, therefore it might prove

difficult justifying the inclusion of
VS.NET screenshots! Figure 4 is the
New Project dialog from VS.NET;
the C# object that we are going to
create is in fact a C# Class Library.
I have chosen to create my project
in my D:\Dev\Itec\cs directory;
obviously your directory
structure will be different.

I will be creating a trivial C#
object, but one that is useful none-
theless: a TDMWeb hosting calcu-
lator application [No, I didn’t bribe
Craig to do this! Ed]. The logic is
simple: a Delphi client application
will present the user with the stan-
dard TDMWeb packages (Basic,
Advanced and Professional), and
various options. We all know that
the cost of hosting can go up as
well as down, so TDMWeb needs
control over the costs. The costs
are implemented using some C#,
as presented in Listing 1. Listing 1
presents three functions, one for
each of the packages. In addition,
each of these functions takes a
parameter that specifies the com-
bination of options that the client
has selected. Bit-wise operators
are used to create and extract the
parameter (the & operator is used
in C# and the SHL operator is used
in Delphi). Figure 5 depicts the
individual values for each option;
obviously they can be combined to
allow multiple options, ie 3 repre-
sents the first two options, 17
represents the first and last
option.

What’s In A Name?
Figure 3 suggested that shared
names are not too dissimilar to
GUIDs. Shared names are used to

➤ Figure 4: Creating a C# object using VS.NET.

namespace TDMWebLib
{
using System;
/// <summary>
/// Summary description for Package.
/// </summary>
public class Package
{
public Package()
{
//
// TODO: Add Constructor Logic here
//

}
private double optionCost(int iOption)
{
long lCost = 0;
if ((iOption & 1) > 0) lCost = lCost + 12;
if ((iOption & 2) > 0) lCost = lCost + 30;

if ((iOption & 4) > 0) lCost = lCost + 30;
if ((iOption & 8) > 0) lCost = lCost + 30;
if ((iOption & 16) > 0) lCost = lCost + 100;
return lCost;

}
public double Basic(int iOption)
{
return 60 + optionCost(iOption);

}
public double Advanced(int iOption)
{
return 100 + optionCost(iOption);

}
public double Professional(int iOption)
{
return 150 + optionCost(iOption);

}
}

}

Integer Representation Option

1 Register UK domain name (eg .co.uk)

2 Register US domain name (eg .com)

4 Additional 50MB web space (Professional Package
only)

8 Easy-Secure: secure form-to-encrypted-email
processing

16 Pro-Secure: 20Mb of your own secure server space ➤ Listing 1:
Our first trivial C# class.

➤ Figure 5: Dealing with TDMWeb package options.

28 The Delphi Magazine Issue 71

verify a .NET component’s identity
and authenticity. A shared name is
actually a simple text name (string)
and a version number; however, a
public key and a digital signature
accompany it. We generated a
shared name using the sn.exe util-
ity, the shared name is stored in

it creates a type library for the
TDMWebLib and registers it.
Finally, it installs TDMWebLib in
the global assembly cache.

The global assembly cache is a
repository that stores the assem-
blies used by .NET clients. Obvi-
ously, the word ‘cache’ gives the
game away; however, the benefits
of using the global assembly cache
are two-fold.

First, the CLR performs an integ-
rity check on each and every
assembly that a .NET client
requests. Assemblies that are in
the global assembly cache have
their integrity checked before they
are placed in the cache; therefore
there is a performance gain to be
had by placing assemblies in the
cache.

The second benefit is version-
ing: the global assembly cache
allows more than one version of
the same assembly. This might be
useful if you need to work with a
‘release’ assembly and a ‘test’
assembly at the same time.

Figure 7 demonstrates Listing 2
being executed: you can see that
the first line compiles the C# files
and uses the shared name key file
that we created earlier.

A Brief Look At IL
I am not going to profess to be an IL
expert; however, I believe that the
best way to learn is by hands-on
exposure. The .NET Framework
SDK installs an IL Disassembler (IL
DASM) that allows us to peek
inside .NET assemblies. Figure 8
presents a screenshot of the IL
DASM tool in use: if you are com-
fortable with type libraries most of
it should be familiar. Notice that
there will have to be a type conver-
sion between integer and int32,
and between double and float64.
It is the CCW that performs this
task for us. Listing 3 presents the IL
for the Basic method: whilst not
rocket science, it does give you an
idea of what is going on under the
hood.

I am not going to dwell on an
analysis of the IL code, but the
basic flow of events is this:
➢ Load register 8 with the value

60: this is the cost of a basic
TDMWeb package.

➤ Figure 6: Creating a
shared name key.

➤ Figure 7: Compiling the C# object; building a type library;
adding the assembly to the global cache.

csc /a.keyfile:TDMKey.snk /target:library TDMWebLib.cs
regasm /tlb:TDMWebLib.tlb TDMWebLib.dll
gacutil -i TDMWebLib.dll

➤ Listing 2: The .bat file that builds our C# assembly.

➤ Figure 8: Viewing the metadata for the TDMWebLib object.

the TDMKey.snk file. TDMKey.snk
is then compiled into the
TDMWebLib assembly (a DLL in
this case). Figure 6 depicts the suc-
cessful output from sn.exe.

Compiling The C# Class
Listing 2 presents a DOS batch file
that performs three tasks. First it
compiles the TDMWebLib using
the command-line compiler. Then

July 2001 The Delphi Magazine 29

➢ Call the method optionCost to
obtain a cost for the options.

➢ Add the cost for the options to
the package cost.

Importing The
TDMWebLib Type Library
We used the regasm.exe tool to
build a type library for the
TDMWebLib object. Regasm.exe
also registers the type library for
us. Importing the type library for
use in Delphi is the simple matter
of choosing the Import Type
Library option from the Project
menu, as shown in Figure 9.
Scrolling through the list of avail-
able type libraries, we should find
the TDMWebLib (Version 0.1) type
library. Clicking on the Create Unit
button creates the source file
TDMWebLib_TLB.pas, which can
then be used in an unmanaged
environment. Listing 4 presents a
fragment of the Pascal file that is
created: the function names
should look familiar.

Once the type library has been
imported, you will probably have
noticed that, in addition to our
three functions, Basic, Advanced
and Professional, we also have
Equals, GetHashCode and GetType.
There is also a property: ToString.

These methods and properties are
part of the .NET base class
System.Object. The CLR enforces a
Common Type System, thus ensur-
ing that each and every managed
class inherits from System.Object.
It is not too dissimilar to Delphi’s
TObject.

Figure 1 depicted Execution Sup-
port as part of the CLR. If you take a
closer look at the type libraries
that are created, you will notice
some reference to MSCorEE.dll.
This is the execution engine that is

responsible for creating the CCW
for the TDMWebLib C# object.

Putting It All Together
Now that we have a compiled C#
object and the associated type
library, we need an application to
allow us to try out our venture in
the managed world of C#. Listing 5
presents the Delphi code required

.method public hidebysig instance float64
Basic(int32 iOption) il managed

{
// Code size 22 (0x16)
.maxstack 3
.locals (float64 V_0)
IL_0000: ldc.r8 60.
IL_0009: ldarg.0
IL_000a: ldarg.1
IL_000b: call instance float64 TDMWebLib.Package::optionCost(int32)
IL_0010: add
IL_0011: stloc.0
IL_0012: br.s IL_0014
IL_0014: ldloc.0
IL_0015: ret

} // end of method Package::Basic

_Package = interface(IDispatch)
['{F9A70A0E-8A4D-325D-BBB9-D786F1FBA61C}']
function Get_ToString: WideString; safecall;
function Equals(obj: OleVariant): WordBool; safecall;
function GetHashCode: Integer; safecall;
function GetType: _Type; safecall;
function Basic(iOption: Integer): Double; safecall;
function Advanced(iOption: Integer): Double; safecall;
function Professional(iOption: Integer): Double; safecall;
property ToString: WideString read Get_ToString;

end;

➤ Listing 4: A snippet of the
Pascal type library that is
created.

➤ Figure 9: Importing
TDMWebLib for use in Delphi.

➤ Listing 3: IL for the Basic managed method.

➤ Figure 10: Why pay an arm and a leg?
[Especially as it’s now even cheaper... Ed]

30 The Delphi Magazine Issue 71

to do just that. Figure 10 presents
the form that will be used to test
our logic. There is some trivial
client-side (Delphi) logic that
ensures that Option 3 is only avail-
able if the Professional package
type is selected but, apart from
that, the client-side processing is
virtually nil: the hard work is being
performed by the CLR (it creates a
CCW) and our C# object
(TDMWebLib). The beauty of this
approach will be realised when
TDMWeb drops its prices (again!):
simply modify the TDMWebLib,
recompile, re-register the assem-
bly, and hey presto: all of the appli-
cations that rely on the
TDMWebLib object will start to use
the new prices.

This example uses early binding:
obviously this brings with it
compile-time benefits of code
completion and type safety. How-
ever, if you must use late binding,
then the following code snippet
should point you in the right
direction:

Uses
ComObj;

..
var obj : OleVariant;
...
obj := CreateOleObject(
‘TDMWebLib.Package’);

dCost := obj.Basic(1);

From Delphi To .NET
I have demonstrated that we can
use managed .NET components in
unmanaged environments via the
‘bridge’ that is the CCW. However,
bridges are for travelling in two
directions (unless you are in
London!), therefore it must be pos-
sible to use unmanaged compo-
nents in a managed environment.

Not surprisingly, you can. The
new acronym for this is RCW: the
Runtime Callable Wrapper. Figure
11 graphically explains the archi-
tecture that the RCW permits.

The RCW, like the CCW, is an
arbitrator that is capable of per-
forming some reasonably compli-
cated marshalling ‘out of the box’.
For instance, the RCW knows how
to seamlessly cast managed data
types into unmanaged data types.
It is able, to take just one example,
to convert a BSTR into a String type
on the fly.

The VS.NET IDE offers type
library import functionality that is
similar to Delphi’s Import Type
Library menu option. Tradi-
tionally, VS.NET uses the Add Ref-
erence menu option from the
Project menu. It is perfectly possi-
ble to add a reference to our Delphi
COM object using the Add Refer-
ence dialog; however, because we
may wish to use the command-line
C# compiler, it is best that we
create a managed type library first.
Creating the managed type library
requires the use of another com-
mand-line utility: tlbimp.exe. List-
ing 6 presents the Delphi
implementation of TDMWebLib.
Figure 12 demonstrates tlbimp.exe
in use: essentially we are taking
our unmanaged Delphi DLL (see

unit Unit1;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics,
Controls, Forms, Dialogs, StdCtrls, CheckLst, ExtCtrls;

type
TForm1 = class(TForm)
Image1: TImage;
rgPackage: TRadioGroup;
clbOptions: TCheckListBox;
Label1: TLabel;
btnCalculate: TButton;
edtCost: TEdit;
Label2: TLabel;
procedure btnCalculateClick(Sender: TObject);
procedure rgPackageClick(Sender: TObject);

private
public
end;

var
Form1: TForm1;

implementation
uses
TDMWebLib_TLB;

{$R *.DFM}
procedure TForm1.btnCalculateClick(Sender: TObject);
var
obj : _Package;
cost : double;
i,options : integer;

begin

// Create an instance of the C# TDMWebLib object...
obj := CoPackage.Create;
options:=0;
// figure out which options are set...
for i:=0 to clbOptions.Items.Count - 1 do
if clbOptions.checked[i] then
options := (1 SHL i) + options;

// Simple validation, and we're off...
if (options > 0) then
case rgPackage.ItemIndex of
0: cost := obj.Basic(options);
1: cost := obj.Advanced(options);
2: cost := obj.Professional(options);

else
ShowMessage('You must select a Package!');

end
else
ShowMessage('You must select at least one option!');

edtCost.text:=Format('%m',[cost]);
end;
procedure TForm1.rgPackageClick(Sender: TObject);
var i : integer;
begin
edtCost.Text:='';
// Clear the currently selected options...
for i:=0 to clbOptions.items.count - 1 do
clbOptions.Checked[i]:=false;

// 50MB is only available for the Professional Package...
clbOptions.ItemEnabled[2]:=
(Sender as TRadioGroup).ItemIndex = 2;

end;
end.

➤ Listing 5: Testing our C# class
using early binding.

➤ Figure 11: Managed meets
unmanaged: the CLR creates a
RCW for each COM object.

32 The Delphi Magazine Issue 71

unit Package;
interface
uses
ComObj, ActiveX, TDMWebLib_TLB, StdVcl;

type
TPackage = class(TAutoObject, IPackage)
protected
function Basic(iOption: Integer): Double; safecall;
function Advanced(iOption: Integer): Double; safecall;
function Professional(iOption: Integer): Double;
safecall;

end;
implementation
uses
ComServ;

function optionCost(iOption : Integer) : Double;
var
lCost : Double;

begin
lCost := 0;
if ((iOption AND 1) > 0) then lCost := lCost + 12;
if ((iOption AND 2) > 0) then lCost := lCost + 30;

if ((iOption AND 4) > 0) then lCost := lCost + 30;
if ((iOption AND 8) > 0) then lCost := lCost + 30;
if ((iOption AND 16) > 0) then lCost := lCost + 100;

Result := lCost;
end;
function TPackage.Basic(iOption: Integer): Double;
begin
Result := 60 + optionCost(iOption);

end;
function TPackage.Advanced(iOption: Integer): Double;
begin
Result := 100 + optionCost(iOption);

end;
function TPackage.Professional(iOption: Integer): Double;
begin
Result := 150 + optionCost(iOption);

end;
initialization
TAutoObjectFactory.Create(ComServer, TPackage,

Class_Package,
ciMultiInstance, tmApartment);

end.

➤ Listing 6: It works both ways.

➤ Figure 12: Building a type library for use in a managed environment.

namespace WinApp
{
using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.WinForms;
using System.Data;
/// <summary>
/// Summary description for Form1.
/// </summary>
public class Form1 : System.WinForms.Form
{
/// <summary>
/// Required designer variable.
/// </summary>
private System.ComponentModel.Container components;
private System.WinForms.Label label2;
private System.WinForms.CheckedListBox clbOptions;
private System.WinForms.Label label1;
private System.WinForms.TextBox edtCost;
private System.WinForms.RadioButton rbBasic;
private System.WinForms.RadioButton rbProfessional;
private System.WinForms.RadioButton rbAdvanced;
private System.WinForms.GroupBox groupBox1;
private System.WinForms.Button btnCalculate;

public Form1()
{
//
// Required for Windows Form Designer support
//
InitializeComponent();
//
// TODO: Add any constructor code after
// InitializeComponent call
//

}
/// <summary>
/// Clean up any resources being used.
/// </summary>
public override void Dispose()
{
base.Dispose();
components.Dispose();

}
/// <summary>
/// Required method for Designer support - do not
/// modify the contents of this method with the code
/// editor.
/// </summary>
private void InitializeComponent()
{
// Removed for conciseness; it's on the companion
// disk that accompanies this magazine

}
protected void rbAdvanced_CheckedChanged (object
sender, System.EventArgs e)

{
clbOptions.SetItemCheckState(2,
CheckState.Indeterminate);

}
protected void rbBasic_CheckedChanged (object sender,
System.EventArgs e)

{
clbOptions.SetItemCheckState(2,

CheckState.Indeterminate);
}
protected void rbProfessional_CheckedChanged (object
sender, System.EventArgs e)

{
clbOptions.SetItemCheckState(2,
CheckState.Unchecked);

}
protected void Form1_Activated (object sender,
System.EventArgs e)

{
rbBasic.Checked = true;
clbOptions.SetItemCheckState(2,
CheckState.Unchecked);

}
protected void clbOptions_SelectedIndexChanged (object
sender, System.EventArgs e)

{
if ((clbOptions.SelectedIndex == 2) &&
(!rbProfessional.Checked)) {
clbOptions.SetItemCheckState(2,
CheckState.Indeterminate);

}
}
protected void btnCalculate_Click (object sender,
System.EventArgs e)

{
// Create an instance of the Delphi TDMWebLib
// package calculator
TDMWebLib.Package obj = new TDMWebLib.Package();
double dCost = 0;
int i, iOptions = 0;
for (i=0;i<clbOptions.Items.Count;i++) {
if (clbOptions.GetItemChecked(i) &&
(clbOptions.GetItemCheckState(i)!=
CheckState.Indeterminate)) {
iOptions = (1 << i) + iOptions;

}
}
if (rbBasic.Checked) {
dCost = obj.Basic(iOptions);

}
else
if (rbAdvanced.Checked) {
dCost = obj.Advanced(iOptions);

}
else
if (rbProfessional.Checked) {
dCost = obj.Professional(iOptions);

}
edtCost.Text = '£' + dCost.ToString();

}
/// <summary>
/// The main entry point for the application.
/// </summary>
public static void Main(string[] args)
{
Application.Run(new Form1());

}
}

}

➤ Listing 7: C# front-end that
uses the Delphi pricing
calculator.

July 2001 The Delphi Magazine 33

Listing 6) and are creating a DLL
that can be used in a managed envi-
ronment. Going back to VS.NET, it
is TDMWEBLIB_MGD.DLL that I
chose to import for this example
(via the Browse option). The
VS.NET Add Reference IDE is fairly
intuitive, so I shall refrain from
presenting a screenshot.

Now that we have a reference to
our managed DLL, what does it give
us? Figure 13 presents the VS.NET
Object Browser. We can see that
our three TDMWebLib methods
are available for use. Listing 7 puts
the methods to good use: it
mimics the operation of the Delphi
equivalent (Listing 5). Like Delphi,
VS.NET offers the usual benefits
gained by early binding, most
notably code completion, as is
demonstrated by Figure 14. Figure
15 presents a screenshot of the C#
version of Figure 10, albeit slightly
less polished.

The C# code that actually uses
the Delphi options costing meth-
ods is nothing more than a few
lines. As you would expect, we
have to create a new instance of
the TDMWebLib Package and then

➤ Figure 13:
Looking at our
Delphi object
in VS.NET's
Object
Browser.

➤ Figure 14: Early binding gives us code completion in VS.NET.

34 The Delphi Magazine Issue 71

Resources
Useful URLs
Deep Inside C#: An Interview with Microsoft Chief Architect Anders Hejlsberg:

http://windows.oreilly.com/news/hejlsberg_0800.html
C# Standardisation: http://msdn.microsoft.com/net/ecma
Language comparison: http://genamics.com/developer/ csharp_comparative.htm

Useful Reading
Introducing .NET, James Conard et al, Wrox Press, ISBN 1-861004-89-3
C# Programming With the Public Beta, Burton Harvey et al, Wrox Press,

ISBN 1-861004-87-7

➤ Figure 15: Calling
the Delphi options
calculator from a C#
application.

execute the methods, as shown in
this snippet:

TDMWebLib.Package obj =
new TDMWebLib.Package();

...
dCost = obj.Basic(iOptions)

So, two-way interoperability is
achievable: our Delphi code base is
safe and we do not need to re-write
it all at once.

Summary
Over the course of this article we
have essentially mixed two devel-
opment environments. Currently,
we are all developing for the same
environment. We use competing
tools, whether it is Delphi and
C++Builder on the one hand, or
Visual Basic and Visual C++ on the
other. With the advent of .NET,
things are about to change.

We cannot just switch off
development for unmanaged envi-
ronments: progression to the man-
aged world must be gradual.
Existing Delphi/C++Builder code is
not going to vanish overnight,
therefore interoperability is vitally
important. Interoperability brings
with it the advantage of language
independence: the ‘my language is
better then your language’ war is
over. Your language might well be

Glossary
Assembly: A collection of func-
tionality built, versioned, and
deployed as a single implementa-
tion unit (one or multiple files).
An assembly is the primary build-
ing block of a .NET application. All
managed types and resources are
marked either as accessible only
within their implementation unit
or as exported for use by code
outside that unit. In the runtime,
the assembly establishes the
name scope for resolving requests
and the visibility boundaries are
enforced. The runtime can deter-
mine and locate the assembly for
any running object because every
type is loaded in the context of an
assembly.

Assembly cache: A machine-
wide code cache used for
side-by-side storage of assem-
blies. There are two parts to the
cache: the global assembly cache
contains assemblies that are
explicitly installed to be shared
among many applications on the
computer; the download cache
stores code downloaded from
internet or intranet sites, isolated
to the application that triggered
the download so that code down-
loaded on behalf of one applica-
tion/page does not impact other
applications.

Metadata: Information that
describes every element managed
by the runtime: an assembly,
loadable file, type, method, and
so on. This can include informa-
tion required for debugging and
garbage collection, as well as
security attributes, marshalling
data, extended class and member
definitions, version binding, and
other information required by
the runtime.

better than mine (per-
haps improved readabil-
ity over tightness of
code?). However, at the
end of the day, the lan-
guages achieve the same
net result [or should that
be .NET result? Ed].

At the time of writing there are
17 development languages lined
up for inclusion in the .NET plat-
form. In the future, multi-language
projects will become a reality. No
longer will single-language pro-
jects be the norm. There is no
reason why ‘skills’ and ‘language
experience’ should dictate the
direction a project takes. For
example: why should a developer
with cost-estimating skills have to
learn VB.NET just to fit in with the
other team members? .NET lan-
guages allow the cost-estimator to
work in whatever language he or
she is familiar with. Language inte-
gration allows C# and VB.NET (for
example) to be used together in a
team project. Thus, teams are
brought together for their busi-
ness skills instead of the tradi-
tional approach where teams
comprise of developers with spe-
cific programming language skills.

Given the profusion of Delphi
developers in the world today,
let’s hope that Borland is looking
at how we can use some or all
of these skills in the .NET
environment.

Craig Murphy works as an Enter-
prise Developer for Currie &
Brown (www.currieb.com) whose
primary business is quantity
surveying, cost management and
project management. He can be
contacted by email at Craig@
isleofjura.demon.co.uk

	Motivation
	Introducing C#
	Positioning C# In .NET
	From .NET To Delphi
	Our First C# Object
	What’s In A Name?
	Compiling The C# Class
	A Brief Look At IL
	Importing The TDMWebLib Type Library
	Putting It All Together
	From Delphi To .NET
	Glossary
	Summary
	Resources

